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Abstract. This paper presents the use of a parameter continuation method and a test function to solve
the steady, axisymmetric incompressible Navier–Stokes equations for spherical Couette flow in a thin gap
between two concentric, differentially rotating spheres. The study focuses principally on the prediction
of multiple steady flow patterns and the construction of bifurcation diagrams. Linear stability analysis
is conducted to determine whether or not the computed steady flow solutions are stable. In the case of
a rotating inner sphere and a stationary outer sphere, a new unstable solution branch with two asymmet-
ric vortex pairs is identified near the point of a symmetry-breaking pitchfork bifurcation which occurs at
a Reynolds number equal to 789. This solution transforms smoothly into an unstable asymmetric 1-vortex
solution as the Reynolds number increases. Another new pair of unstable 2-vortex flow modes whose so-
lution branches are unconnected to previously known branches is calculated by the present two-parameter
continuation method. In the case of two rotating spheres, the range of existence in the (Re1, Re2) plane of
the one and two vortex states, the vortex sizes as a function of both Reynolds numbers are identified. Bifur-
cation theory is used to discuss the origin of the calculated flow modes. Parameter continuation indicates
that the stable states are accompanied by certain unstable states.

1. Introduction

Spherical Couette flow, which occurs in flows through a thin gap between differentially rotating spheres, is
known to possess multiple steady flow patterns. Wimmer (1976) investigated the case of a flow between a ro-
tating inner and a stationary outer sphere with a gap width of σ = 0.18 (where σ = (R2 − R1)/R1, and R1
and R2 are the radii of the inner and the outer spheres, respectively). He observed non-unique flow modes at
a supercritical Reynolds number (i.e. Re1 = ω1 R2

1/ν, where ω1 represents the angular velocity of the inner
rotating sphere, and ν is the kinematic viscosity), namely three steady axisymmetric modes and two unsteady
non-axisymmetric modes. Steady modes contain either none, one, or two vortices per hemisphere near the
equator, and are referred to as Mode I, Mode III, or Mode IV, respectively. Unsteady modes contain either
one or two vortices. Wimmer (1976) demonstrated that these flow modes were induced by different accel-
erations of the inner sphere, i.e. each mode occurred when the inner sphere was specially accelerated to
a particular angular velocity which corresponded to certain critical values of the Reynolds number. It was
found that each flow mode had its own particular region of existence at steady state.
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Published literature, including Bartles (1982), Marcus and Tuckerman (1987), Schrauf (1986), Bühler
(1990), Mamun and Tuckerman (1995), and Yang (1996), provides prediction methods for the three steady
axisymmetric flow modes, and discusses flow mode transitions and bifurcation behaviors. The roles played
by equator symmetry-breaking in the transition process and flow mode bifurcation are of particular inter-
est. For the case of a rotating inner sphere and a stationary outer sphere with a gap width of σ = 0.18
and Re1 ≤ 800, Schrauf (1986) and Marcus and Tuckerman (1987) deduced the bifurcation structure
of the axisymmetric spherical Couette flow, and identified four bifurcation points. The first point was
a saddle-node bifurcation, which occurred at Re1 ≈ 645, and which formed a pair of 1-vortex branches;
one stable and the other unstable. The second and third bifurcation points were two subcritical pitchfork
bifurcations undergone by the main branch at Re1 ≈ 652 and Re1 ≈ 775, respectively. The main branch
changed continuously from zero to two vortex states. By definition, each subcritical pitchfork bifurca-
tion created pairs of unstable branches. The branches originating at Re1 ≈ 652 were found to terminate
via a pitchfork bifurcation (i.e. the fourth bifurcation point) on the unstable 1-vortex branch for the range
645 < Re1 < 652. It would be reasonable to expect that the bifurcation which occurred at Re1 ≈ 775
would also be accompanied by the creation of a pair of unstable asymmetric branches, and in fact this
solution was reported by Luo and Yang (1998). This present paper investigates this solution in greater
detail.

Some scholars have studied bifurcations in flows generated by concentric, co-/counter-rotating spheres.
Yavorskaya and Belyaev (1986) observed a variety of steady axisymmetric and three-dimensional travel-
ing wave secondary regimes in the case of σ = 0.11. Zikanov (1996) used a numerical simulation approach
to identify three different types of symmetry-breaking primary bifurcations of the basic equilibrium. For
σ = 0.11, Yavorskaya et al. (1977, 1980) and Yavorskaya and Belyaev (1986) showed that the basic flow
only transforms to 1-vortex flow within a restricted range of outer-sphere angular velocity, namely in
the range −920< Re2 < 1940, where Re2 = ω2 R2

2/ν. Within the range 1940< Re2 < 4290, the primary
bifurcation ceases to exhibit rotational symmetry and instead becomes a three-dimensional, azimuthally
traveling wave flow with spiral vortices which originates at the equator. Counter-rotation of the bound-
ary spheres in the range −3350< Re2 < −920 results initially in instability in the form of azimuthally
traveling spirals whose spatial structures, however, differ significantly from those mentioned above. Tay-
lor vortices occur at the stability limit of the basic flow, but only within a restricted range of outer-sphere
angular velocity. However, the precise boundaries of the different flow modes are yet to be determined.
Thus, the aim of this current paper is to investigate further the precise nature of flow between co-/counter-
rotating spheres, and to construct bifurcation structures for various values of Re1. The origin of the flow
modes identified will be explained by reference to bifurcation theory. Although it is known that some of
the flows described above are non-axisymmetric in nature at high Reynolds number, the current study fo-
cuses only upon low Reynolds number axisymmetric flows due to the limitations of the available computing
facilities.

Schrauf (1986) applied the continuation method proposed by Keller (1977) to the steady axisymmetric
Navier–Stokes equations in order to investigate the stability regions of different flow modes for the case of
a gap of σ = 0.18 and with inner sphere rotation only. The present study extends his work to both co- and
counter-rotating spheres. In previous studies of Taylor–Couette flow which adopted a continuation method,
the singular points were indicated by a sign change of the Jacobian determinant. However, this study ap-
plies an alternative method, namely a test function proposed by Seydel (1988). Using this approach, the
bifurcation locations are indicated by changes of the test function sign.

The remainder of this paper is as follows: Section 2 provides an outline of the calculation method, and
briefly reviews linear stability theory. Section 3 presents and discusses the numerical results and diagrams.
Finally, Section 4 draws some conclusions.

2. Governing Equations and Numerical Methods

We consider a flow of steady, incompressible Newtonian fluid contained between two concentric co-
/counter-rotating spheres. The governing equations are written in the spherical coordinate system. Since
axisymmetric flows are considered, stream function Ψ , vorticity function ξ , and angular velocity function
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φ can be introduced as follows:
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Let the radius of the inner sphere R1 and angular velocity ω1 be reference values of radius and angular
velocity, respectively. Then non-dimensional quantities (denoted by asterisks) can be defined via

r = r∗ R1, u = u∗ R1ω1, ψ = ψ∗R3
1ω1, φ = φ∗ R2

1ω1, ξ = ξ∗ R1ω1.

We drop the asterisks in the following sections, and the dimensionless momentum equation in the circumfer-
ential direction is
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The streamfunction follows from the Poisson equation

−D2ψ− ξ = 0, (4)

where the differential operator is

D2 = ∂2

∂r2 + 1

r2

∂2

∂θ2 − cot θ

r2

∂

∂θ
. (5)

α is defined as α= R2/R1 = σ +1. η is the Reynolds numbers ratio defined as η= Re2/Re1.
The boundary conditions are ‘no slip’ conditions at the spheres

φ(1, θ)= sin2 θ, φ(α, θ)= η sin2 θ,

ψ(1, θ)= 0, ψ(α, θ)= 0,
ξ(1, θ)= −ψrr , ξα, θ)= −ψrr .

(6)

The symmetry conditions at the poles are

φ(r, 0)= 0, φ(r, π)= 0,
ψ(r, 0)= 0, ψ(r, π)= 0,
ξ(r, 0)= 0, ξ(r, π)= 0.

(7)

There are no physical conditions for the vorticity function at the walls. Hence, Poisson equations are used:

ξ(1, θ)+ψrr (1, θ)= 0, ξ(α, θ)+ψrr (α, θ)= 0. (8)

The governing equations are discretized by central differences of second order and form a system of nonlin-
ear algebraic equations:

G(X, Re1, η)= 0, (9a)

where X is the solution vector. The solution of system (9a) is a two-dimensional surface in real space
RN+1. Parts of this surface are calculated by determining its intersections with hyperplanes Re1 = const. or
η= const., i.e. by computing solution curves of

G(X, Re1 = const., η)= 0, G(X, Re1, η= const.)= 0. (9b)
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The folds of the surface are calculated as well.
Because the problems both depend only on one parameter, they can be abbreviated as

G(X, λ)= 0, (9c)

where λ stands for the Reynolds number of inner sphere (Re1) or Reynolds numbers ratio (η). This gives
a sequence of iteration [X(υ)(λ)] defined by

X(0)(λ)≡ initial estimate, (10a)

G X(X
(υ), λ)

⌊
X(υ+1)− X(υ)

⌋
= −G(X(υ), λ), v= 0, 1, 2 . . . (10b)

Here G X is the Jacobian matrix of (9c). One way to obtain good initial estimates is to use a Taylor expansion
of the solution with respect to the changes in the parameter λ. Thus we use

X(0)(λ+ δλ)= X(λ)+ δλXλ(λ). (11a)

To obtain Xλ, we can use (9a) and it satisfies

G X(X, λ)Xλ = −Gλ(X, λ). (11b)

The method described in (10) and (11) is known as the Euler–Newton continuation. It is extremely effective
and usually converges quadratically. However, it fails in points where the Jacobian matrix G X(X, λ)= 0 is
singular. To avoid the singular points, Keller’s (1977) continuation method is introduced:

N(X(s, λ(s)))≡ 〈
Ẋ(s0) · [X(s)− X(s0)]

〉+ λ̇(s0)[λ(s)−λ(s0)]− (s − s0)= 0. (12)

Here [X(s0, λ(s0))] is a previously computed solution for λ fixed in the present discussion and s = s0.
Ẋ = dX/ds and λ̇= dλ/ds denote the components of a tangent vector to the solution path [X(s), λ(s)]. Then
a new system of equations is written as

{
G(X, λ)= 0,
N(X, λ, s)= 0,

which can be solved. The Jacobian of this new system is

∂(G, N)

∂(X, λ)
=

(
G X Gλ

NX Nλ

)
. (13)

With the Euler–Newton continuation in s rather than λ, it is possible to follow the solution around singu-
lar points.

The singular points can be located at the place where the sign of the determinant of the Jacobian matrix
changes. In doing so, it is necessary to use a great deal of computer memory storage and CPU time to cal-
culate these singular points which may suffer from scaling problems in numerics. To reduce computer costs
and avoid the scaling problems, we introduce a test function, Γi, j(X, λ), proposed by Seydel (1988), shown
as follows:

Γi, j(X, λ)= eT
i J̃(X, λ)h, (14)

where h satisfies the system

h = J̃−1
i, j ei, (15)

ei is a unit column vector and the matrix J̃i, j is reduced to J̃ by replacing its ith row by a unit base vector, i.e.
J̃i, j ≡ [

(I − eieT
i ) J̃ + eieT

j

]
. Equation (15) guarantes that the column vector h is a nontrivial solution. The

value of (14), Γi, j(X, λ), approaches zero if G X(X, λ) approaches singular points. The quantity Γi, j(X, λ)
measures the rank-deficiency and serves as a test function. Therefore, the singular points can be determined
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by monitoring the value of the test function. If the sign of the test function changes, a flow mode varia-
tion is encountered. However, Γi, j(X, λ) is not singular at simple turning points. Detecting turning points
is much easier through the sign change of ∂λ/∂s. Other test functions may also be used for detecting bifur-
cation points. The most direct one is by zero leading eigenvalues, but it is much more time-consuming and
thus less efficient for large problems.

To investigate the stability of various flow states obtained by the continuation method described above,
a linear stability analysis is carried out. A basic state X0 found by Newton’s method during continuation is
perturbed by small time-dependent quantities,

X = X0 +ε eγt, (16)

where ε is a small disturbance vector. For transient solutions, a set of time-dependent equations can be
derived and written as

M(X)
dX

dt
= G(X, λ), (17)

where M(X) is the mass matrix and it is singular because some equations, e.g. the stream equations, do not
have an explicit time-dependent term. Substituting (16) into (17), after collecting the linear terms of ε, leads
to the generalized algebraic eigenvalue problem:

γM(X0)ε= J̃(X0)ε. (18)

The matrix J̃ represents the Jacobian matrix of G(X, λ) evaluated for the basic state solution. The
stability of the basic state X0 can be determined by the sign of the eigenvalue γ . The basic solution is in-
finitesimally stable if Re{γ } < 0 holds for all eigenvalues γ , i.e. if all perturbations in (16) will decay with
time. If there is at least one eigenvalue with Re{γ } > 0, the corresponding eigenmode will grow as t → ∞
and the basic solution is unstable. However, if the solution is already unstable, the sign change of det{J}
alone does not give sufficient information about an exchange of stability. For this reason, it is necessary to
calculate at least the leading eigenvalue, and this reduces the effort of the stability analysis significantly.
However, because M is singular, some eigenvalues are infinite and they are not responsible for the linear in-
stability. It is necessary to remove these infinite eigenvalues when calculating the leading eigenvalues. An
effective algorithm for this purpose is a shift-and-inverse operation (Arnoldi algorithm). The generalized
eigenvalue problem (18) is transformed into a standard eigenvalue problem:

(
J̃ −βM

)−1
Mε= γ̂ ε, γ̂ = 1

γ −β , (19)

where β is a complex shift parameter such that ( J̃ −βM)−1 M is not singular. This standard problem is then
solved by a restarted, iterative Arnoldi method which is essentially a sophisticated extension of the power
iteration method and allows a number of eigenvalues γ̂ of largest magnitude to be calculated (Saad, 1992).
ARPACK (Sorensen, 1992), an Arnoldi-method-based package, is then used to calculate the leading eigen-
values and corresponding eigenvectors. Real shift values are found satisfactory in the present study. The
onset of instability in our calculation, where the leading eigenvalue becomes positive, is consistent with the
bifurcation diagram or the test function.

3. Results and Discussion

3.1. Inner Sphere Rotating and Outer Sphere Stationary

The computational domain is discretized into equally spaced grid points in both the radial and the meridional
direction. In order to determine the dependency of the numerical solution on the grid point distribution, three
different grid structures are chosen for the investigation, i.e. 31×301, 41×301, and 41×361 (in the radial
and the meridional direction, respectively). For the cases of σ = 0.18 and σ = 0.176, several numerical and
experimental investigations are available in published literature. Table 1 provides a comparison of the cur-
rent results with those of Marcus and Tuckerman (1987), Schrauf (1986), Bar-Yoseph et al. (1990), Bartels
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Table 1. Critical Reynolds numbers (Re1c) for the transition from a flow with m vortex pairs to a flow with n vortex pairs when
Re2 = 0 (— indicates that the data is not reported).

σ 0 → 1 1 → 0 Hysteresis (∆Re) 0 → 2

Numerical results
This study
(31×301) 0.18 650.23 643.6 6.63 745.7/790(c)

(41×301) 0.18 649.13 642.32 6.81 745.1/789
(41×361) 0.18 649.13 642.32 6.81 744.3/788
Marcus and Tuckerman 0.18 652.11 644.25 7.86 739.8/775
Schrauf 0.18 659.97 – – –
Schrauf(a) 0.176 – 652.89 – 750.01
Schrauf(b) 0.176 666.32 660.87 5.45 –
Bar-Yoseph 0.176 – 665−657 – –

0.18 666 – – 753
Bartels 0.176 – 666.5 – 728−776.5

Experimental results
Wimmer 0.18 649.5−653.4 624.6−653 – 800−810.6

(a) Taken from the values listed in Marcus and Tuckerman (1987).
(b) Taken from the values listed in Bar-Yoseph et al. (1990).
(c) The first value is the Reynolds number that the 2-vortex flow starts to appear and the second value is the Reynolds

number where the flow bifurcation is detected.

(1982), and Wimmer (1976). The present solutions may be regarded as grid-independent when the 41×401
grid system is used. As shown in Table 1, there is good agreement between the critical Reynolds numbers
computed in the current study and the results reported previously.

3.1.1. Solution States

Figure 1 depicts the seven steady flow modes predicted in this study for a gap of σ = 0.18. The flow
modes, shown in Figure 1(a)–(d), have been reported in previous literature and are referred to as 0-vortex,
0-vortex with pinches, 1-vortex, and 2-vortex flow, respectively. The other three flow modes are reported
for the first time in this study. For purposes of simplicity, the domain is represented as rectangular, al-
though in reality it is actually curved. Contours of Ψr sinΘ, which are tangent to the meridional velocity, are
plotted. The solid curves designate counter-clockwise circulation, while the dashed curves indicate clock-
wise circulation. In these flows, the Ekman pumping effect causes fluid to be thrown outward centrifugally
along the rotating inner sphere and pulled away from the center of the stationary outer sphere. This re-
sults in a large-scale meridional flow whose direction is counter-clockwise in the northern hemisphere, and
clockwise in the southern hemisphere. This phenomenon can be seen in all flows with non-zero Reynolds
numbers.

Figure 1(e) is similar to Figure 1(c) in that it also contains one pair of Taylor vortices near the equator.
However, its vortex size and strength are much smaller and weaker than those in Figure 1(c). The asymmet-
ric 2-vortex state shown at Re = 800 in Figure 1(f) consists of two pairs of Taylor vortices, one of which is
just slightly larger than the other and straddles the equator. Figure 1(g) predicts the occurrence of an asym-
metric 1-vortex with a pinch flow mode when Re = 1000 and shows that it contains two Taylor vortices, one
of which is larger and straddles the equator. It will be noted that this flow mode is characterized by a pinch
on only one of the large-scale recirculations.

3.1.2. Bifurcation Diagram with Inner Sphere Rotating and Outer Sphere Stationary

Figure 2(a) presents the torque distributions of the different flow states which occur when the inner sphere
rotates and the outer sphere remains stationary. It can be seen that there is reasonably good agreement
between the solutions of the stable branches and the numerical results provided by Marcus and Tuck-
erman (1987). A schematic representation of the bifurcation diagram is shown in Figure 2(b), in which
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(d) Re =1000

Figure 1. The seven steady flow modes predicted for σ = 0.18 in the case of rotation of the inner sphere and a stationary outer
sphere. — marks the location of the equator.

Figure 2. (a) Torque distributions of different states in the case of rotation of the inner sphere and a stationary outer sphere.
(b) Schematic bifurcation diagram for Re1 < 1200 in the case of rotation of the inner sphere and a stationary outer sphere. Note
that the solution branch (−S2, SN2, −−S2) which is unconnected to the known branch can be calculated using the two-parameter
continuation method described in this current study.

the vertical axis represents flow states and is neither a monotonic nor even a single-valued function of
torque. Figure 2(a) labels the stable (solid lines) and unstable (dashed lines) branches with indices of +
and −, respectively. The character of the indices is determined from linear stability analysis of the eigen-
values of the Jacobian matrix. The second index of each label indicates the nature of symmetry of that
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Figure 3. A sequence of steady states for different Reynolds number Re1, ranging from asymmetric 2- to 1-vortex with pinches state.
— marks the location of the equator.

branch, i.e. symmetric branches are labeled S, and asymmetric branches are designated A. The third in-
dex of the labels is a numerical value which indicates the number of Taylor vortex pairs in the flow.
Finally, the fourth index, P, indicates whether or not the flow state possesses pinches in its large-scale
recirculation.

It can be seen from Figure 2(b) that the 0-vortex with pinches (−S0P) gradually becomes an unsta-
ble 2-vortex flow (−S2) as Re1 increases. By means of the linear stability analysis described in Sec-
tion 2, it can be shown that the flow in the range 649< Re1 < 789 is unstable, with a single unstable
eigenmode. It is noted that there is no bifurcation between PF1 and PF3. This result is consistent with
the test function approach. The unstable 2-vortex flow undergoes another subcritical pitchfork bifurca-
tion (PF3) at Re1 = 789. This leads to a newly identified unstable asymmetric 2-vortex flow (−A2),
whose asymmetry increases along its branch. The new branch bifurcates subcritically, which means that
it inherits the stability index of the less stable portion of its parent branch. Considering the parent
branch, as the flow mode gradually changes from −S0P to +S2 for increasing Re1, a newly born vor-
tex appears between a large basic recirculation and a Taylor vortex on each side of the equator. This
newly born vortex gains in size and strength as Re1 increases before finally settling to a stable 2-vortex
flow.

Along each unstable asymmetric 2-vortex branch (−A2), the flow gradually transforms into an unstable
asymmetric 1-vortex with pinches state (−A1P), which is identified for the first time in this study. Figure 3
shows the flow mode variation along the branch from −A2 to −A1P. With an increase in Re1, it can be seen
that the southern vortex near the large basic recirculation shrinks, and that the corresponding northern vortex
grows in size and strength. Eventually, the southern large basic recirculation and the Taylor vortex merge to
form a single pinched large basic vortex. Linear stability analysis reveals the existence of just one unstable
mode in this range.

This study identifies for the first time the existence of a pair of unstable 2-vortex branches, which are cre-
ated at Re1 = 810 by a saddle-node bifurcation (SN2). One of the branches is characterized by a positive
eigenvalue, corresponding to the anti-reflection symmetric eigenmode. The flow along this branch destabi-
lizes further, and becomes a twice unstable state (− −S2) with two eigenvectors of positive eigenvalues. It
is interesting to note that SN2 is unconnected to any of the previous solution branches. In general, the con-
tinuation method can only guarantee finding branches which are connected to known branches. However,
this paper demonstrates that it is possible to obtain SN2 solutions for two-sphere rotation. This issue will be
discussed in greater detail later.
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3.2. Bifurcation Diagram for Two Concentric Rotating Spheres

This section of the paper considers the case where the outer sphere rotates in addition to the inner one. Dif-
ferent Reynolds numbers (Re1 and Re2) of the two spheres generate different flow bifurcation diagrams
and different existence ranges of Taylor vortex modes. Figures 4–7 present the appropriate flow diagrams as
functions of Re1 and Re2. Within the range 638< Re1 < 745, the bifurcation diagrams form closed curves.
This is demonstrated in Figure 4(a), which presents the particular case where Re1 = 675. (Note that friction
torque is used as a measurement.) For the sake of clarity, a schematic diagram is also plotted, and is shown
in Figure 4(b). When the outer sphere is stationary (i.e. Re2 = 0) and the inner one rotates at angular vel-
ocities within the specified range, it is seen that there are three modes, namely stable 1-, unstable 1-, and
0-vortex with pinches state. Note that Re2 > 0 indicates co-rotation of the spheres, while Re2 < 0 denotes
counter-rotating cases. In this bifurcation diagram, the stable 1-vortex state exists between two saddle-node
bifurcations (SN1 and SN2). Additionally, the flow state (+S1) is destabilized by these two saddle-node
bifurcations, and becomes an unstable 1-vortex state (−S1) with a positive unstable eigenvalue, which cor-
responds to an anti-reflection symmetric eigenmode. Following the −S1 flow further reveals the existence
of two pitchfork bifurcations (PF1 and PF2) in both the co-rotating and the counter-rotating spheres cases.
For both PF1 and PF2, the −S1 flow may follow one of two routes, namely (1) the flow may become an
unstable 0-vortex with pinches state (−S0P) via a symmetry-breaking transition, or (2) the flow may desta-
bilize further and become the twice unstable 1-vortex state (−S1). These branches connect the two pitchfork
bifurcations (PF1 and PF2) and close the curve of the bifurcation diagram.

When 745< Re1 < 782, the bifurcation diagrams still form closed curves and are all similar to Fig-
ure 5(a), which presents the case at Re1 = 770. The corresponding schematic diagram is depicted in Fig-
ure 5(b). It can be seen that the bifurcation diagrams for both co- and counter-rotating spheres in this Re1
range are broadly similar to those in 638< Re1 < 745. However, the unstable 0-vortex with pinches branch
is slightly different than that which is observed in the previous diagram, namely a new pair of saddle-node
bifurcations (SN3 and SN4) appear. The basic flow has two vortices near these saddle-node bifurcations. The
vortex flows may be one of two types; an unstable 2-vortex state (−S2) or a twice unstable state (− −S2).
The unstable 2-vortex state located at Re2 = 0 corresponds to the unstable 2-vortex state (−S2) shown in
Figure 2.

When 782< Re1 < 836, the bifurcation diagrams still form closed curves and are all similar to Fig-
ure 6(a), which shows the case at Re1 = 830. The corresponding schematic diagram is given in Figure 6(b).
These bifurcation diagrams are also similar to those in the range 745< Re1 < 782, other than along the

Figure 4. (a) Bifurcation diagram for co-/counter-rotating spheres in the range 638< Re1 < 745. Stable and unstable flows are in-
dicated by solid and dashed lines, respectively. Saddle-node bifurcations and pitchfork bifurcations are represented by circular solid
points. (b) Schematic bifurcation diagram of (a).



124 R.-J. Yang and W.-J. Luo

Figure 5. (a) Bifurcation diagram for co-/counter-rotating spheres in the range 745 < Re1 < 782. Stable and unstable flows are in-
dicated by solid and dashed lines, respectively. Saddle-node bifurcations and pitchfork bifurcations are represented by circular solid
points. (b) Schematic bifurcation diagram of (a).

Figure 6. (a) Bifurcation diagram for co-/counter-rotating spheres in the range 782 < Re1 < 836. Stable and unstable flows are in-
dicated by solid and dashed lines, respectively. Saddle-node bifurcations and pitchfork bifurcations are represented by circular solid
points. (b) Schematic bifurcation diagram of (a).

branch with two saddle-node bifurcations. The flow mode is an unstable 0-vortex with pinches state under-
going a pitchfork bifurcation PF1. After passing through a saddle-node bifurcation (SN3), the flow gradually
becomes an unstable 2-vortex flow with one unstable anti-reflection symmetric eigenmode. This unstable
2-vortex flow may then undergo another subcritical pitchfork bifurcation (PF3), leading to a pair of unstable
asymmetric 2-vortex flows. Additionally, the flow may also restabilize at this subcritical pitchfork bifur-
cation and become a stable 2-vortex flow (+S2) along the continuation path. During this Re2-dependent
evolution, the stable 2-vortex state located at Re2 = 0 corresponds to the stable 2-vortex state (+S2) shown in
Figure 2. Proceeding further along this branch, the stable 2-vortex flow is destabilized via another subcritical
pitchfork bifurcation (PF4) and returns to the unstable 2-vortex state (−S2). Two asymmetric branches with
one positive leading eigenvalue, corresponding to an anti-symmetric eigenvector, connect the two subcritical
pitchfork bifurcations (PF3, PF4). Along these two branches, the flow gradually evolves from unstable asym-
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Figure 7. (a) Bifurcation diagram for co-/counter-rotating spheres for Re1 = 1000 and −500< Re2 < 400. Stable and unstable flows
are indicated by solid and dashed lines, respectively. Saddle-node bifurcations and pitchfork bifurcations are represented by circular
solid points. (b) Schematic bifurcation diagram of (a).

metric 2-vortex to asymmetric 1-vortex with pinches state (−A1P), before finally returning to the unstable
asymmetric 2-vortex state once again. The unstable asymmetric states located at Re2 = 0 on these branches
correspond to the unstable asymmetric state in Figure 2. Note that the crossings of the +S1 branch near PF3
and PF4 in the torque diagram do not represent bifurcations.

For a gap ratio of σ = 0.154 and the case of inner sphere rotation with a stationary outer sphere, a sta-
ble asymmetric 1-vortex solution exists in the bifurcation diagram (Mamun and Tuckerman, 1995). It is
of interest to determine whether this same solution would be manifest in the current case of two rotat-
ing spheres and a gap of σ = 0.18. Calculations were carried out for higher values of Reynolds number.
It was found that when Re1 > 950, a twice unstable asymmetric 1-vortex solution (− −A1) appears in
the case of counter-rotating spheres. When Re1 = 1000 and −500< Re2 < 400, the bifurcation diagram
forms a closed curve. The corresponding schematic diagram is given in Figure 7. The 1-vortex branch
is separated into two distinct 1-vortex branches by the two saddle-node bifurcations, i.e. SN5 and SN6,
and the flow states become the unstable 1-vortex states with one unstable reflection symmetric eigen-
mode, respectively. Proceeding further along these two distinct branches, it can be seen that the flow states
may respectively undergo two pitchfork bifurcations (PF5, PF6), leading to a pair of unstable asymmet-
ric 1-vortex flows (−−A1) and two twice unstable 2-vortex flows (− −S2). The asymmetric 1-vortex
branches possess a pair of conjugate leading eigenvalues, corresponding to an anti-symmetric eigenvector
and a symmetric eigenvector, and connect the two pitchfork bifurcations (PF5, PF6). For the parame-
ter values under current consideration, the asymmetric solution (− −A1) is unstable. However, as noted
above, a stable asymmetric 1-vortex solution exists in the bifurcation diagram when the gap ratio σ = 0.15
and the inner sphere rotates but the outer sphere is stationary. Figure 7 sheds important new light on the
origination of the asymmetric solution. Whether the asymmetric 1-vortex solution is stable or unstable
would appear to depend on the value of the gap ratio, i.e. existence of a stable flow may be determined
by a critical gap ratio. However, establishing the value of this critical gap is not within the scope of
this study.

3.3. Linear Stability Analysis in Differential Rotating Spheres

The numerical methods described in Section 2 can be used to calculate the leading eigenvalues and cor-
responding eigenmodes for each solution branch. The leading eigenvalues on each branch in this study are
always real. Figure 8 shows the computed eigenvalue λ of the most unstable eigenmode as a function of
Re2 along the branch from SN4 to PF4 in the bifurcation diagram where Re1 = 840. Since the Navier–
Stokes equations are adopted and the boundary conditions are associated with spherical Couette flow which
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Figure 8. Eigenvalue distributions as a function of Re2.

are all reflection symmetric, then the linear eigenmodes of the equilibrium must be either reflection or
anti-reflection symmetric. In Figure 6(b), there is only one positive eigenvalue, corresponding to the anti-
reflection symmetric eigenmode, from PF1 along the −S2 branch. Proceeding further along this branch, after
passing through SN4 at Re2 = 41, the flow destabilizes further, and an additional positive eigenvalue appears,
as indicated by the hollow rhombic symbols and dashed lines in Figure 8. This eigenvalue corresponds to the
reflection symmetric eigenmode. The original positive eigenvalues are represented by solid rhombic sym-
bols and connected by solid lines. Therefore, it can be seen that there are two eigenvectors with positive
eigenvalues connecting SN4 to the saddle-node bifurcation (SN3). The corresponding reflection and anti-
reflection symmetric eigenvectors of the twice unstable 2-vortex flow (− −S2) at Re1 = 830 and Re2 = −88

Figure 9. Corresponding reflection and anti-reflection symmetric eigenvalues of the twice unstable 2-vortex flow (−−S2) at
Re1 = 830 and Re2 = −88. — marks the location of the equator.
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are shown in Figure 9. The eigenvalues gradually reduce their magnitudes as Re2 decreases after SN4 along
the anti-reflection symmetric branch. After passing through SN3, the positive eigenvalue corresponding to
the reflection symmetric eigenmode changes sign, i.e. at Re2 = −265. The other positive eigenvalues, indi-
cated by the solid triangular symbols and lines in Figure 8, undergo another subcritical pitchfork bifurcation
(PF3) at Re2 = −255, i.e. very close to SN3. As seen in Figure 6(b), PF3 has two unstable asymmetric so-
lution branches. Along these two asymmetric branches (from −A2 to −A1P equilibrium), there exists one
positive eigenvalue corresponding to the anti-reflection symmetric eigenmode, which is also indicated by
solid triangular symbols and lines in Figure 8. With increasing Re2, the magnitudes of both asymmetry and
eigenvalue increase and attain maximum values at approximately Re2 = −100. As Re2 continues to increase
beyond this value, both magnitudes gradually decrease.

3.4. Torque Distributions in Two Concentric Rotating Spheres

Although it is possible to construct a three-dimensional diagram to show torque distributions as functions
of Re1 and Re2, this paper prefers to use two-dimensional diagrams in order to depict the computed results
more clearly. As discussed previously, Figure 2(a) shows the computed torque distributions for different so-
lution branches in the case of inner sphere rotation with a stationary outer sphere. The solution branches
(−S2 and − −S2), which are unconnected to the primary solution branch (+S2), are clearly visible.

For the case of two concentric rotating spheres, Figure 10 shows the distributions of the critical Reynolds
numbers (Re2c) of various flow modes as a function of Re1. Re2c is defined as the existence range of stable
1-vortex flow for either co-rotating or counter-rotating spheres. The distributions of these critical numbers
form a parabolic curve, and the distribution of the largest friction torque for the stable 1-vortex is denoted by
the dashed line. Taylor vortices exist inside the curve, while outside the curve only basic flow exists. As Re1
increases, the existence range of Taylor vortices gradually expands, and the number of flow modes which
exist within the range also increases. For larger values of Re1, the Taylor vortices are more coherent, and so
it takes more angular momentum flux of the outer sphere to destabilize the flow modes in both the co-rotating
and the counter-rotating cases. Furthermore, for any specific angular velocity of the inner sphere, the abso-
lute value of the critical number (Re2c) is always larger in the case of counter-rotation. Hence, more angular

Figure 10. Instability region shown as functions of Re1 and Re2.
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momentum flux is required before the flow destabilizes for counter-rotating spheres. Such phenomena are
similar to those which occur in two coaxial rotating cylinders.

By controling the outer sphere rotation, it is possible to obtain the solution branch unconnected to
the known solution branches which was identified in the case of a rotating inner sphere and a stationary
outer sphere. At values of Re1 = 642 and Re1 = 648, the saddle-node bifurcation (SN1) and the symmetry-
breaking pitchfork bifurcation (PF1) are located on the coordinate Re2 = 0, correponding to the saddle-node
bifurcation (SN1) and the pitchfork bifurcation (PF1) shown in Figure 2(b), respectively. As Re1 is in-
creased further, the range of critical Reynolds numbers (Re2c) expands, and the flow states at Re2 = 0
(including stable 1-vortex, unstable 1-vortex, and 0-vortex with pinches states) grow in strength and size.
When 745< Re1 < 782, two saddle-node bifurcations and a subsequent twice unstable 2-vortex state ap-
pear on the original 0-vortex with pinches branch. This phenomenon appears first in the counter-rotating
condition when Re1 = 745. With increasing Re1, the range between the pitchfork bifurcations (PF1, PF2)

and the existence range of the unstable 2-vortex state spread even wider. When Re1 > 745, the unstable
2-vortex state is found on the coordinate of Re2 = 0, which corresponds to state −S2 in Figure 2(b). For the
range 782< Re1 < 836, two subcritical pitchfork bifurcations (PF3, PF4) appear on the original 0-vortex
with pinches state branch in addition to the two saddle-node bifurcations (SN4 and SN3). Two unstable
asymmetric branches originate from PF3 and PF4, and the unstable 2-vortex flow also stabilizes via the
two pitchfork bifurcations. The two subcritical pitchfork bifurcations and the two asymmetric branches
(−A1P) appear first in the counter-rotating condition at Re2 = 782. The existence range of these two pitch-
fork bifurcations (PF3, PF4) enlarges with increasing Re1. At values of Re1 = 789 and Re1 = 810, PF3
and SN4 are located at the coordinate of Re2 = 0, corresponding to PF3 and SN2 in Figure 2(b), respec-
tively. Moreover, when Re1 > 782, the stable 2-vortex branch and the unstable asymmetric branch continue
to appear on the coordinate of Re2 = 0, corresponding to the branch +S2 and the branch −A1P in Fig-
ure 2(b). Also, when Re1 > 810, the unstable 2-vortex branch and the twice unstable 2-vortex branch
continue to appear on the coordinate of Re2 = 0, and correspond to the branch −S2 and the branch −−S2
in Figure 2(b). In Figure 10, for the transition from basic flow to 1-vortex flow, the lowest critical Re1c
occurs not at Re2 = 0 and Re1 = 642, but rather at Re2 = −80 and Re1 = 638. Therefore, by properly
adjusting the angular velocity of the outer sphere in the counter-rotating condition, it is possible to sus-
tain a stable Taylor vortex at a lower value of Re1 than in the case of a stationary outer sphere. This
may be explained by the fact that for counter-rotating spheres, the fluid is drawn onto the opposite azi-
muthal directions in the boundary layers of the two spheres, and this makes the Taylor vortices stronger
and more coherent.

Figure 11 shows the stable 1-vortex states for corresponding values of Re2. As Re2 becomes strongly
counter-rotating, it can be seen that another type of basic meridional flow appears, i.e. an additional elon-
gated region of counter-circulation develops near the pole and the outer sphere in each hemisphere. This
phenomenon is clearly visible in Figure 11, which shows the case for Re2 = −500. Zikanov (1996) re-
ported a similar flow structure although a different gap ratio was investigated in his paper. Furthermore,
it takes more angular momentum flux to destabilize the 1-vortex flow. In direct contrast to the counter-
rotating case, in the co-rotating case, the fluid is drawn onto the same azimuthal directions in the boundary
layers. The strength of the Taylor vortices is therefore much weaker, and so it requires less angular mo-
mentum flux to destabilize the vortex. Accordingly, the absolute values of the critical Reynolds number
Re2c for counter-rotating spheres are much larger than those for co-rotating spheres for a specific value
of Re1.

3.5. Vortex Sizes for Different Vortex Modes for Two Concentric Rotating Spheres

Figure 12 shows the vortex-size of the 1-vortex state as a function of Re1 and Re2. It can be seen that for
specific values of Re1, the vortex-size distributions form closed curves. These curves are circular at low Re1
values and become deformed circles as Re1 increases. The upper and lower parts of the circles denote the
stable and unstable 1-vortex states, respectively. When Re2 = 0, increasing Re1 results in the stable 1-vortex
flow gradually growing in size, although the size of the unstable 1-vortex remains approximately constant.
In counter-rotating conditions, the vortices in the flow grow in strength and size due to the interaction ef-
fect of the inner and outer sphere boundaries. Regardless of the absolute value of Re1, the largest vortex-size
of the stable 1-vortex state always occurs in the counter-rotating condition at an approximate location of



Flow Bifurcations in a Thin Gap Between Two Rotating Spheres 129

Figure 11. Stable 1-vortex states for corresponding values of Re2 and a constant value of Re1 = 830. As Re2 becomes strongly
counter-rotating, another type of basic meridional flow appears, i.e. an additional vortex develops near the pole and the outer sphere
in each hemisphere. This is clearly visible in the case of Re2 = −500. — marks the location of the equator.

Figure 12. Vortex-size distributions of 1-vortex flow as functions of Re1 and Re2. Solid lines indicate the vortex-size distributions
of the stable 1-vortex flow, while dashed lines indicate those of the unstable 1-vortex flow. The boundary line between the stable and
unstable 1-vortex state is also shown.
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Re2 = −50. With decreasing Re2, the counter-rotating and interaction effects in the azimuthal direction be-
tween the inner and outer sphere boundaries become more significant, and this in turn gradually causes the
existing vortices to twist and lose their stability. In the co-rotating spheres condition, the interaction effect in
the azimuthal direction between the inner and outer sphere boundaries gradually becomes weaker as Re2 in-
creases. This gradually causes the existing vortices to shrink in size and strength, and eventually to lose their
stability. The smallest vortex-size of the unstable 1-vortex state occurs first in the counter-rotating condition
at smaller values of Re1. It is noted that the unstable vortex-size remains approximately constant for values
of Re2 > 100.

4. Conclusions

This paper has investigated the steady flow between co- and counter-rotating concentric spheres for a gap
width of σ = 0.18. A continuation method was used to study the bifurcation structure and the instability of
the flow using Navier–Stokes equations. The method used a test function to predict and locate singularities,
in which a bifurcation was indicated by a zero quantity of the test function. The test function is continuous
over a sufficiently large interval to be valid for the cases considered in this study, and the results confirm that
the test function approach serves as an effective tool in the location of singular points. The computed solu-
tions were carefully checked to be grid-independent, and show reasonably good agreement with numerical
solutions and experimental data reported in available literature. The current study has clarified the instability
regions of the two-dimensional flow.

In the condition where the inner sphere rotates and the outer remains stationary, three pitchfork bifur-
cation points, namely PF1, PF2, and PF3, and two saddle-node bifurcation (SN1 and SN2) were detected.
Previous studies identified the existence of the 0-, 1-, and 2-vortex flow modes. However, this current study
has identified and investigated three additional steady states and solution branches, namely (1) the unsta-
ble asymmetric 2-vortex state (−A2, via a pitchfork bifurcation, PF3), (2) the unstable asymmetric 1-vortex
with pinches state (−A1P, subsequent to the −A2 state), and (3) a pair of unstable 2-vortex branches (−S2
and −−S2, created by a saddle-node bifurcation, SN2). The pair of unstable 2-vortex branches, which are
independent of the primary branch, are reported for the first time in this study.

The continuation method can only guarantee identifying branches which are connected to known
branches. However, the current study has demonstrated that by proper control of the rotation of the outer
sphere, i.e. by imposing another continuation parameter on the system, solutions unconnected to the known
branches can be located. In other words, some branches, which are independent of the primary known branch
in a one-parameter system, can be identified through continuation of another parameter, and associated with
the primary branches via a two-parameter system.

In the condition where both spheres rotate within the considered parameter range (i.e. σ = 0.18,
Re1 < 1000, and −500< Re2 < 400), this study identifies three stable steady flow modes (+S0, +S1, and
+S2) and seven unstable steady flow modes (−S0P, −S2, −S1, −A2, −A1P, −S1, and − −S2) with either
one or two unstable eigenmodes. These states are connected to each other and form bifurcation structures.
Different bifurcation diagrams in Re1 and Re2 are used to describe the relationships between these stable and
unstable flow modes, and are useful tools in understanding the allowable transitions among stable states. All
of the bifurcation diagrams produced in this study are broadly similar and all form closed curves. The study
presents four bifurcation diagrams to describe the different bifurcation structures which occur at four distinct
values of Re1 in the range Re1 < 1000. It is noted that a stable 1-vortex state always exists between the two
saddle-node bifurcations shown in the bifurcation diagrams. From the sequential variations of bifurcation
structure, it may be deduced that the existence of a stable 1-vortex state will be accompanied by both unstable
0-vortex with pinches states and 1-vortex states. The major differences between these bifurcation structures
are the sequential variations along the branch of the 0-vortex with pinches state. The stable 2-vortex state
appears on this branch at the final pitchfork bifurcation stage (PF3 and PF4). The study shows that the origin
and development of stable 1- and 2-vortex states can be explained successfully using bifurcation theory.

For the case of 1-vortex flow with rotation of both spheres, it has been shown that the range of instability
regimes gradually expands with increasing values of Re1, and that it forms a parabolic curve. Flows within
this range comprise various stable or unstable states. It has been found that the regimes for each mode al-
ways appear first in the counter-rotating case. Furthermore, for different values of Re1, the friction torque of
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each flow mode for the condition of counter-rotating spheres is always larger than in the case of co-rotating
spheres. Also, the largest friction torque of the stable states always occurs in the counter-rotating condition
because more angular momentum flux is required to destabilize the flow in these rotation conditions.

For specific values of Re1, the vortex-size distributions of 1-vortex flow form closed curves. As Re2 de-
creases, the counter-rotating and boundary interaction effects of the inner and outer spheres become more
significant. This gradually causes the existing vortices to twist and to lose their stability. For the case of co-
rotating spheres, the boundary interaction effects of the inner and outer spheres gradually become weaker
as Re2 increases. Thus, the existing vortices gradually shrink in size and strength and eventually lose their
stability at a critical Reynolds number Re2c. For specific values of Re1, the largest vortex-size of the stable
1-vortex state always occurs in the counter-rotating condition.

Constructing a complete bifurcation diagram is useful in revealing the physics of a flow, and it was the
intention of the authors to develop a comprehensive diagram within this study. The diagram can be used to
reveal the location of stable solutions, and their relations to unstable solutions. For higher Reynolds number
flows, the diagram may also be used to check dynamics responses to disturbances by considering flow transi-
tions from laminar to turbulence. However, this involves the use of three-dimensional, transient, and accurate
computations, which are beyond the present scope of this study.
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